
Operating Systems 2016/17
Assignment 6

Prof. Dr. Frank Bellosa
Dipl.-Inform. Marc Rittinghaus

Submission Deadline: Monday, December 05th, 2016 – 23:59

A new assignment will be published every week, right after the last one was due. It
must be completed before its submission deadline.

The assignments must be filled out online in ILIAS. Handwritten solutions are no
longer accepted. You will find the online version for each assignment in your tutorial’s
directory. P-Questions are programming assignments. Download the provided tem-
plate from ILIAS. Do not fiddle with the compiler flags. Submission instructions can
be found on the first assignment.

In this assignment you will get familiar with interprocess communication.

T-Question 6.1: Interprocess Communication

a. What are the two fundamental models of interprocess communication? Give a short
explanation for each. 2 T-pt

b. Why is IPC via shared memory often more difficult to use for an application devel-
oper? 1 T-pt

c. Explain the concept of mailboxes for IPC. How are mailboxes uniquely identified in
Linux? 2 T-pt

d. You have been asked to write a server application using message-based IPC. You
can choose between two request processing models: 3 T-pt

Forking For each incoming request the server forks, creating a new worker that is
responsible for processing the request. The worker exits afterwards.

Worker Pool At program start a fixed number of worker threads are created. An
incoming request is directed to an idle worker thread of the pool or queued if
all threads are busy.

Briefly compare the two models regarding implementation cost, resources usage
(CPU, memory, etc.), and complexity of data sharing between workers.

1



P-Question 6.1: Pipes

Download the template p1 for this assignment from ILIAS. You may only modify
and upload the file pipe.c.

In assignment 2 you wrote a simple program starter that used the fork, exec and
waitpid system calls to start a program and wait for its exit. Your solution had to
return the exit status of the new process or the special value 127 to indicate error
conditions in your own program. However, the solution could not properly detect if
the forked child failed to exec or if the started program normally exited with status
code 127.

In this question you will extend the program starter to receive proper error infor-
mation.

a. Complete the function run program so that the forked child transmits the error
number errno to the parent (the program starter), if the call to exec fails. Your
function should fulfill the following requirements: 4 P-pt

• Returns -1 on any error; the exit status of the child process otherwise.

• Allows the caller to read the correct error number from errno.

• Uses the pipe2 system call to create a new pipe and sets the necessary flags
to avoid leakage of the pipe’s file descriptors into the execed program.

• Uses the write/read system calls to write to and read from the pipe, transmit-
ting – on error – the error number errno of exec from the child to the parent.

• Closes unnecessary pipe endings in the parent and child respectively as soon
as possible and fully closes the pipe before returning to the caller. Do not leak
file descriptors!

Hints: Assume that the write and read system calls do not fail and ignore errors
from the close system call. The template only marks the most important locations
that need to be extended, you need to add further code to fulfill all requirements.

int run_program(char *file_path, char *argv[]);

2



P-Question 6.2: Message Queues

Download the template p2 for this assignment from ILIAS. You may only modify
and upload the file message queue.c.

In this question you will write a simple client-/server application using two pro-
cesses and a mailbox (known as message queue in Linux) for communication. The
server accepts commands from the client and performs corresponding actions. The
message format is defined in the template by the Message structure, the available
commands are defined in the Command enumeration.

a. Implement the server in the runServer function. The server should adhere to the
following criteria: 3 P-pt

• Returns -1 on any error, 0 otherwise.

• Creates and initializes a new message queue, which takes Message structures
and provides space for 10 messages, using the mq open call and appropriate
flags for read-only access and QUEUE NAME as name.

• Fails if the message queue already exists.

• Receives messages from the client and processes them until an exit condition
is met.

• Implements the following commands:

CmdExit Exits the server
CmdAdd Adds the two parameters supplied in the message and prints the

result with the FORMAT STRING ADD format string.
CmdSubtract Subtracts the second message parameter from the first one and

prints the result with the FORMAT STRING SUBTRACT format string.

• Exists on error or on reception of an unknown command.

• Closes the message queue on exit and unlinks it

int runServer();

b. Implement the client functions. Assume the message queue to be already created
by the server and ready to be opened for write access by the client. 2 P-pt

mqd_t startClient();
int sendExitTask(mqd_t client);
int sendAddTask(mqd_t client, int operand1, int operand2);
int sendSubtractTask(mqd_t client, int operand1, int operand2);
int stopClient(mqd_t client);

Total:
8T-pt
9P-pt

3


